Demonstration and deployment of multi-purpose Hydrogen Refuelling Stations combining road and airport, railway, and/or harbour applications

Call Information
Call Title
Demonstration and deployment of multi-purpose Hydrogen Refuelling Stations combining road and airport, railway, and/or harbour applications
Call Reference
HORIZON-JTI-CLEANH2-2024-02-05
Funding Programme
Scope and expected outcomes

ExpectedOutcome:

Hydrogen Refueling Stations are an essential element of the future hydrogen mobility. For widespread hydrogen mobility to be viable, it will be essential to provide a nationwide network of publicly accessible HRS for passenger cars, trucks, buses, vans, etc. all over the EU. Furthermore, larger heavy duty fueling applications such as trains, harbours, and airports will require very reliable, high-capacity stations capable of delivering many tons each day in a safe manner.

Thus, it is fundamental to develop and optimise HRS (especially for trains, marine and airport applications), situated on depots, with corresponding captive demand for large-scale hydrogen. This concept assumes the provision of pressurised gaseous and/or liquid hydrogen together with the development of appropriate and reliable systems for lifetime prediction. Combining multi-mobility ecosystems (railway, maritime and airports) within the same HRS may reduce refuelling costs and supply chain costs. For example, at an airport, hydrogen is supplied for aviation systems (aircraft, ground support equipment, etc.) while hydrogen is available for heavy duty cargo transport vehicles. The project has to be commissioned and tested in order to measure if the technical requirement are met.

The project results are expected to contribute to the following outcomes:

  • The deployment of hydrogen refuelling facilities for vehicles (ground support equipment and heavy-duty vehicles fleets) and captive fleets (buses, trains, etc.);
  • High public visibility with a growing number of trial and demonstration projects;
  • Full integration into the broader energy ecosystem;
  • The underpinning of Europe’s leadership in the supply of HRS solutions worldwide;
  • The development of new services and the HRS delivery platform;
  • The creation of an EU map of hydrogen refuelling stations;
  • Improved understanding of common failures at HRS;
  • Improved interoperability of HRS;

Project results are expected to contribute to the following objectives and KPIs of the Clean Hydrogen JU SRIA:

  • Reduction of CAPEX: 1.5–4k€/(kg/d) (700bars), 0.65-2.5k€/(kg/d) (350bars), 1.5-4k€/(kg/d) (LH2);
  • Increased availability: 98% (700bars), 98% (350bars), 97% (LH2);
  • Hydrogen price: 3€/kg (700bars), 2€/kg (350bars), 3€/kg (LH2);
  • Annual maintenance cost: 0.5€/kg (700bars), 0.35€/kg (350bars), 0.5€/kg (LH2) ;
  • Increased reliability (mean time between failures): 72 days (700 bars), 144 days (350 bars), 216 days (LH2).

Scope:

The aim of this topic is to demonstrate a multipurpose HRS able to supply a combination of aviation, rail and/or heavy-duty road applications.

Combining these mobility ecosystems will stimulate the development of a regional hydrogen economy, creating a synergy with public and private actors across the hydrogen value chain (production, distribution, storage, and end-use).

Currently station costs, both CAPEX and OPEX, are high, thus challenging the development of a refuelling station business model, particularly in the early years when utilisation is comparatively low.

Reliability is also low, creating difficulties for customers who cannot rely on their hydrogen supply.

In addition, the approvals and construction processes for hydrogen stations are too slow, while their design is heavily influenced by the respective fuelling protocols developed by each manufacturer, which are not yet fully understood and optimised.

Proposals should respond to the following technical requirements:

  • Develop high throughput stations for heavy duty vehicles fleets (trains, buses or trucks, aircrafts, maritime vessels, and associated ground support equipment), including 1,000 to 3,000kg/day capacity and individual fills of more than 200 kg expected in less than 20 minutes; more generally the station capacity should depend on filling station profile (e.g. hourly peak demand is usually around 7% of the daily mass dispensed (for trucks);
  • Develop digital models that capture refuelling data in aim to anticipate load curves in the HRS;
  • Reduce CAPEX and OPEX by implementing innovative technological components (e.g., compressors, cooling systems, dispensers) and optimising their integration into the design and operation of the HRS;
  • The interaction between the HRS and other fleet-specific processes on site or nearby can also be investigated. The control strategy will reduce the energy consumption of the HRS and allow safe and optimised refuelling of the vehicles and will adapt/develop appropriate fuelling protocols;
  • Reduce OPEX and increase reliability by developing and testing of condition-based maintenance approaches for key HRS components;
  • Facilitate the use of locally produced green hydrogen, e.g., by enabling low inlet pressure and flexible operation for intermittent renewable energies, or production by electrolysis or biomass;
  • Develop a pressurised and/or liquid hydrogen supply strategy;
  • Implementing appropriate protocols depending on different supply strategies e.g., the development of swap tank containers for distribution and storage;
  • Analysis and identification of standardised primary performance metrics of HRS and input to standardisation premiums in order to enable comparison of different HRS;
  • Aim to standardise and industrialise HRS equipment and components while developing protocols for safe and reliable refuelling in partnership with OEMs and distributors;
  • Include specific targets (beyond the State-of-the-Art) for improved reliability, safety and availability of HRS equipment and infrastructure;
  • Address technical certification and levels of education and awareness amongst regulators and other stakeholders;
  • Support improved efficiency, with the goal of zero boil-off for LH2 and losses during hydrogen transfer, distribution, and, ultimately, across the whole hydrogen supply chain;
  • Provide refuelling of support vehicles within the respective area of use, demonstrating global platform autonomy;
  • Develop an understanding of common failures at HRS;
  • Quantify the costs incurred when operating an HRS.

Proposals are encouraged to explore synergies with projects within the metrology research programme run under the EURAMET research programmes EMPIR and the European Partnership on Metrology (in particular projects MetroHyVe2, Met4H2 and MefhySto, MetHyInfra and MetHyTrucks).

Proposals are encouraged to explore synergies with the Zero Emission Waterborne Transport (ZEWT) partnership and Clean Aviation JU as this topic has the potential for providing operational and technical solutions for hydrogen refuelling infrastructure in ports and airports.

This topic is expected to contribute to EU competitiveness and industrial leadership by supporting a European value chain for hydrogen and fuel cell systems and components.

Proposals should provide a preliminary draft on ‘hydrogen safety planning and management’ at the project level, which will be further updated during project implementation.

For additional elements applicable to all topics please refer to section 2.2.3.2.

Activities are expected to start at TRL 5 and achieve TRL 7 by the end of the project - see General Annex B.

At least one partner in the consortium must be a member of either Hydrogen Europe or Hydrogen Europe Research.

The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million – proposals requesting Clean Hydrogen JU contributions above this amount will not be evaluated.

Purchases of equipment, infrastructure or other assets used for the action must be declared as depreciation costs. However, for the following equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks): HRS and related components, costs may exceptionally be declared as full capitalised costs.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2024 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2024 which apply mutatis mutandis

Specific Topic Conditions:

 

Activities are expected to start at TRL 5 and achieve TRL 7 by the end of the project - See General Annex B.

 

Conditions

General conditions

1. Admissibility conditions: described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes

For all Innovation Actions the page limit of the application is 70 pages.

Proposal page limits and layout: described in Part B of the Application Form available in the Submission System. 

Page limit for Innovation Actions

For all Innovation Actions the page limit of the applications are 70 pages.

2. Eligible countries: described in Annex B of the Work Programme General Annexes

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

3. Other eligibility conditions: described in Annex B of the Work Programme General Annexes

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JTI-CLEANH2-2024-01-05: The maximum Clean Hydrogen JU contribution that may be requested is EUR 10.00 million

- HORIZON-JTI-CLEANH2-2024-02-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JTI-CLEANH2-2024-02-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JTI-CLEANH2-2024-02-05: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

- HORIZON-JTI-CLEANH2-2024-03-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million

- HORIZON-JTI-CLEANH2-2024-04-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million

- HORIZON-JTI-CLEANH2-2024-06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million

- HORIZON-JTI-CLEANH2-2024-06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million

 

Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. In the Call 2024 this applies to the demonstration of innovative hydrogen production for energy intensive industries and the chemical sectors, demonstration of innovative technologies for the distribution of hydrogen including multi-purpose hydrogen refueling infrastructure, demonstration of hydrogen-powered inland shipping or short sea shipping solutions. This will also apply to the two Hydrogen Valley topics as they are considered of strategic importance for the European Union ambitions to double the number of Hydrogen Valleys by 2025. For these flagship topics large amount of  co-investment/co-funding of project participants/beneficiaries including national and regional programmes is expected. This applies to the following topics:

- HORIZON-JTI-CLEANH2-2024-01-05

- HORIZON-JTI-CLEANH2-2024-02-03

- HORIZON-JTI-CLEANH2-2024-02-04

- HORIZON-JTI-CLEANH2-2024-02-05

- HORIZON-JTI-CLEANH2-2024-03-04

- HORIZON-JTI-CLEANH2-2024-04-01

- HORIZON-JTI-CLEANH2-2024-06-01

- HORIZON-JTI-CLEANH2-2024-06-02

 

The following additional eligibility criteria apply: At least one partner in the consortium must be a member of either Hydrogen Europe or Hydrogen Europe Research.

The following additional eligibility criteria apply: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million – proposals requesting Clean Hydrogen JU contributions above this amount will not be evaluated.

4. Financial and operational capacity and exclusion: described in Annex C of the Work Programme General Annexes

5. Evaluation and award:

  • Award criteria, scoring and thresholds are described in Annex D of the Work Programme General Annexes

  • Submission and evaluation processes are described in Annex F of the Work Programme General Annexes and the Online Manual

Seal of Excellence:

For the two topics in the Call 2024 addressing Hydrogen Valleys, the ‘Seal of Excellence’ will be awarded to applications exceeding all of the evaluation thresholds set out in this Annual Work Programme but cannot be funded due to lack of budget available to the call. This will further improve the chances of good proposals, otherwise not selected, to find alternative funding in other Union programmes, including those managed by national or regional Managing Authorities. With prior authorisation from the applicants, the Clean Hydrogen JU may share information concerning the proposal and the evaluation with interested financing authorities. In this Annual Work Programme ‘Seal of Excellence’ will be awarded for the following topic(s):

- HORIZON-JTI-CLEANH2-2024-06-01

- HORIZON-JTI-CLEANH2-2024-06-02

 

  • Indicative timeline for evaluation and grant agreement: described in Annex F of the Work Programme General Annexes

6. Legal and financial set-up of the grants: described in Annex G of the Work Programme General Annexes

In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

1. Lump Sum

This year’s call for proposals will take the form of lump sums as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021- 2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025). Lump sums will be used across all topics in the Call 2024.   

2. Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JTI-CLEANH2-2024-01-05

- HORIZON-JTI-CLEANH2-2024-02-03

- HORIZON-JTI-CLEANH2-2024-02-04

- HORIZON-JTI-CLEANH2-2024-02-05

- HORIZON-JTI-CLEANH2-2024-03-04

- HORIZON-JTI-CLEANH2-2024-04-01

- HORIZON-JTI-CLEANH2-2024-06-01

- HORIZON-JTI-CLEANH2-2024-06-02

3. Subcontracting

For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.

The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.

The target countries are all Member States of the European Union and all Associated Countries.  

 

Purchases of equipment, infrastructure or other assets used for the action must be declared as depreciation costs. However, for the following equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks): HRS and related components, costs may exceptionally be declared as full capitalised costs.

Eligible costs will take the form of a lump sum as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021-2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025). [[This decision is available on the Funding and Tenders Portal, in the reference documents section for Horizon Europe, under ‘Simplified costs decisions’ or through this link: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ls-decision_he_en.pdf]].

Specific conditions

7. Specific conditions: described in the chapter 2.2.3.2 of the Clean Hydrogen JU 2024 Annual Work Programme

 

 

 

Documents

Call documents:

Application form

- Application form - Part B (HE CleanH2 JU RIA, IA)

- Application form - Part B (HE CleanH2 JU CSA)

Evaluation form 

- Evaluation form (HE RIA, IA)

- Evaluation form (HE CSA)

Model Grant Agreement (MGA)

Lump Sum MGA v1.0

Call-specific instructions

Detailed budget table (HE LS)

Clean Hydrogen JU - Annual Work Programme 2024 (AWP 2024)

 - AWP 2024

Clean Hydrogen JU - Strategic Research and Innovation Agenda (SRIA) 

- SRIA Clean Hydrogen JU

Lump Sums Guidance

Guidance: "Lump sums - what do I need to know?"

Comprehensive information on lump sum funding in Horizon Europe 

  

 

Additional documents:

HE Main Work Programme 2023–2024 – 1. General Introduction

HE Main Work Programme 2023–2024 – 13. General Annexes

HE Programme Guide

HE Framework Programme and Rules for Participation Regulation 2021/695

HE Specific Programme Decision 2021/764

EU Financial Regulation

Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment

EU Grants AGA — Annotated Model Grant Agreement

Funding & Tenders Portal Online Manual

Funding & Tenders Portal Terms and Conditions

Funding & Tenders Portal Privacy Statement

Disclaimer: The information contained on this webpage is sourced directly from the European Commission's Funding and Tenders Portal (https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/home). ERRIN does not assume responsibility for the currentness or accuracy of the information provided. We endeavour to keep the information up to date and correct, but any reliance you place on such information is strictly at your own risk.